Schematische Darstellung einer Triangulen-Quantenspinkette, die auf einer Goldoberfläche mit der scharfen Spitze eines Rastertunnelmikroskops untersucht wird. Jede Triangulen-Einheit hat einen Gesamtspin von 1, aber Quantenkorrelationen in der Kette führen zu einer Spinfraktionalisierung, so dass die endständigen Triangulene einen Spin von ½ aufweisen.

Schematische Darstellung einer Triangulen-Quantenspinkette, die auf einer Goldoberfläche mit der scharfen Spitze eines Rastertunnelmikroskops untersucht wird. Jede Triangulen-Einheit hat einen Gesamtspin von 1, aber Quantenkorrelationen in der Kette führen zu einer Spinfraktionalisierung, so dass die endständigen Triangulene einen Spin von ½ aufweisen.

Links: Rastertunnelmikroskopaufnahme einer Probe mit Triangulen-Quantenspinketten. Ketten mit zwei bis sieben Triangulen-Einheiten sind hervorgehoben. Rechts: Hochauflösendes Rastertunnelmikroskopbild einer zehn Einheiten langen Spinkette, in der die einzelnen Trianguleneinheiten klar aufgelöst sind. Der höhere Tunnelstrom über den endständigen Triangulen-Einheiten, der zu ihrem helleren Erscheinungsbild führt, ist auf Spin-½-Anregungen an den Kettenenden zurückzuführen. Die chemische Struktur von Triangulen ist in der eingefügten Abbildung dargestellt.

Links: Rastertunnelmikroskopaufnahme einer Probe mit Triangulen-Quantenspinketten. Ketten mit zwei bis sieben Triangulen-Einheiten sind hervorgehoben. Rechts: Hochauflösendes Rastertunnelmikroskopbild einer zehn Einheiten langen Spinkette, in der die einzelnen Trianguleneinheiten klar aufgelöst sind. Der höhere Tunnelstrom über den endständigen Triangulen-Einheiten, der zu ihrem helleren Erscheinungsbild führt, ist auf Spin-½-Anregungen an den Kettenenden zurückzuführen. Die chemische Struktur von Triangulen ist in der eingefügten Abbildung dargestellt.

Die Empa-Forscher Shantanu Mishra, Pascal Ruffieux und Roman Fasel (von links nach rechts) an einer Ultrahochvakuum-Anlage zur Herstellung von Triangulen Spinketten.

Die Empa-Forscher Shantanu Mishra, Pascal Ruffieux und Roman Fasel (von links nach rechts) an einer Ultrahochvakuum-Anlage zur Herstellung von Triangulen Spinketten.

Exotische Magnetzustände in kleinster Dimension

Publiziert

Unter der Leitung der Empa und des International Iberian Nanotechnology Laboratory gelang es einem internationalen Forscherteam erstmals, Quanten-Spinketten aus Kohlenstoff zu bauen, wie sie in der aktuellen Ausgabe von «Nature» berichten. Mittels Rastertunnelmikroskopie lieferten sie experimentelle Beweise für eines der wichtigsten Modelle des Quantenmagnetismus: die Haldane-Phase, erstmals 1983 vorhergesagt von F.D.M. Haldane, einem der drei Träger des Physik-Nobelpreises 2016. Die Ergebnisse könnten zu einem besseren Verständnis des Quanten-Magnetismus führen und einen Beitrag zum aufstrebenden Gebiet des Quantum Computing leisten.

Wir alle sind mit der Vorstellung vertraut, dass einfache Bausteine in der Natur zusammenwirken, um komplexe Strukturen zu bilden. Atome verbinden sich zu Molekülen, Moleküle verbinden sich zu Zellen, Zellen verbinden sich zu Gewebe, was schließlich zur Bildung komplexer Organismen wie dem Menschen führt. In der Quantenwelt kann dieser Prozess jedoch auch in umgekehrte Richtung laufen: Dann führen Wechselwirkungen zwischen zwei komplexen Systemen zur Entstehung einfacherer Objekte.

Quantenzauber: Quantenmagnete in zwei Hälften zerteilen

Alle Elementarteilchen haben einen "Spin", eine grundlegende Eigenschaft, die ihre Wechselwirkung mit Magnetfeldern bestimmt. Spins sind quantisiert, das heißt, sie können nur diskrete Werte annehmen. Elektronen haben den kleinstmöglichen Spin, der zwei diskrete Werte annehmen kann, während die nächst einfacheren Systeme solche sind, deren Spin drei diskrete Werte annimmt - diese werden als «Spin ½» bzw. «Spin 1» bezeichnet. In den 1980er Jahren sagte der spätere Nobelpreisträger F.D.M. Haldane voraus, dass eine Kette von aneinandergereihten Spin-1-Bausteinen «fraktioniert» sein sollte, so dass sich die letzten Einheiten der Kette wie Spin-½-Objekte verhalten. Ähnlich wie ein Zauberer, der eine Person in zwei Hälften sägt und sie dann auseinanderschiebt, teilen also Quantenkorrelationen in der Kette einen Spin 1 in zwei Spin-½-Einheiten.

Eindimensionale Magnetketten aus Molekülen zusammengebaut

Diese Vorhersage im Labor zu testen, war aus verschiedenen Gründen schwierig, vor allem, weil herkömmliche Materialien nicht eindimensional sind. Indirekte Beweise für die Spinfraktionierung wurden zwar in Kristallen aus metallorganischen Verbindungen gefunden, die solche Spin-Ketten enthalten, aber eine direkte Beobachtung des Phänomens war nicht möglich.

Nun hat ein internationales Forscherteam einen bemerkenswerten Weg gefunden, den Beweis für Haldanes fast 40 Jahre alte Theorie zu erbringen. Mittels einer Kombination organischer Chemie und Oberflächenchemie im Ultrahochvakuum hat das Team eindimensionale Spin-Ketten aus Kohlenstoff fabriziert. Als Baustein diente ein dreieckiges aromatisches Kohlenwasserstoffmolekül mit Spin 1, bekannt als Triangulen. Die Triangulen-Moleküle wurden im Ultrahochvakuum erhitzt und verbinden sich so zu ausgedehnten Molekülketten. Mit Hilfe eines Rastertunnelmikroskops untersuchte das Empa-Team um Roman Fasel, Pascal Ruffieux und Shantanu Mishra dann die magnetischen Anregungen dieser Ketten auf einer Goldoberfläche. Sie beobachteten, dass die jeweils äussersten Kettenglieder der Triangulen-Ketten sogenannte Kondo-Resonanzen aufwiesen – ein charakteristischer spektroskopischer Fingerabdruck von Spin-½-Quantenobjekten in Kontakt mit einer Metalloberfläche.

Von der Kette zum Netzwerk – und zum Quantencomputer?

Die Forscher sind überzeugt, dass leicht und direkt zugängliche molekulare Spinsysteme mit stark korrelierten Elektronen eine fruchtbare experimentelle Umgebung für die Entwicklung und Überprüfung neuer theoretischer Konzepte bieten werden. Nebst der Erforschung linearer Spinketten haben die Wissenschaftler vor allem auch zweidimensionale Netzwerke von Quantenmagneten im Fokus. Solche Spin-Netzwerke sind eine vielversprechende Materialplattform für das Quantum Computing.

EVENTS

Hannover Messe

Transfoming Industry Togheter

Datum: 22.-26. April 2024

Ort: Hannover (D)

IFAT

Weltleitmesse für Wasser-, Abwasser-, Abfall- und Rohstoffwirtschaft

Datum: 13.-17. Mai 2024

Ort: München (D)

drupa

Weltweit führende Fachmesse für Drucktechnologien

Datum: 28. Mai-07.Juni 2024

Ort: Düsseldorf (D)

ArbeitsSicherheit Schweiz

Fachmesse für Arbeitssicherheit, Gesundheitsschutz und Gesundheitsförderung am Arbeitsplatz

Datum: 05.-06. Juni 2024

Ort: Zürich (CH)

Achema

Internationale Leitmesse der Prozessindustrie

Datum: 10.-14. Juni 2024

Ort: Frankfurt am Main (D)

EPHJ-EPMT-SMT

Internationale Ausstellung für Uhrenindustrie, Mikrotechnologie und Medizinaltechnik

Datum: 11 – 14 Juni 2024

Ort: Genf (CH)

SENSOR + TEST

Internationale Fachmesse für Sensorik, Mess- und Prüftechnik

Datum: 11.-13. Juni 2024

Ort: Nürnberg (D)

all about automation

Fachmesse für Industrieautomation

Datum: 28.-29. August 2024

Ort: Zürich (CH)

maintenance Schweiz

Schweizer Fachmesse für industrielle Instandhaltung und Facility Management

Datum: 28.-29. August 2024

Ort: Zürich (CH)

Ilmac Lausanne

Networking. Forum. Aussteller

Datum: 18.-19. September 2024

Ort: Lausanne (CH)

FachPack

Europäische Fachmesse für Verpackung, Technik, Veredelung und Logistik

Datum: 24.-26. September 2024

Ort: Nürnberg (D)

W3+ Fair Jena

Europas führende Plattform für Forschung und Innovationskraft

Datum: 25.-26. September 2024

Ort: Jena (D)

Cleanzone

Internationale Fachmesse und Kongress für Reinraumtechnologie

Datum: 25.-26. September 2024

Ort: Frankfurt am Main (D)

Rehacare

Die REHACARE ist die internationale Fachmesse für Rehabilitation, Prävention, Inklusion und Pflege.

Datum: 25.-28. September 2024

Ort: Düsseldorf (D)

IN.STAND

Die Messe für Instandhaltung und Services

Datum: 08.-09. Oktober 2024

Ort: Stuttgart (D)

VISION

Weltleitmesse für Bildverarbeitung

Datum: 08.-10. Oktober 2024

Ort: Stuttgart (D)

IFAS

Fachmesse für den Gesundheitsmarkt

Datum: 22.-24. Oktober 2024

Ort: Zürich (CH)

ALL4PACK EMBALLAGE

The global marketplace for Packaging Processing Printing Handling

Datum: 04.-07. November 2024

Ort: Paris (F)

electronica

Weltleitmesse und Konferenz der Elektronik

Datum: 12.-15. November 2024

Ort: München (D)

SEMICON Europa

Europäische Leitmesse für Mikroelektronik

Datum: 12.-15. November 2024

Ort: München (D)

VALVE WORLD EXPO

Weltweite Leitmesse für Industrie-Armaturen

Datum: 03.-05. Dezember 2024

Ort: Düsseldorf (D)

LABVOLUTION

Europäische Fachmesse für innovative Laborausstattung und die Optimierung von Labor-Workflows

Datum: 20.-22. Mai 2025

Ort: Hannover (D)

Automatica

Die Leitmesse für intelligente Automation und Robotik

Datum: 24.-27. Juni 2025

Ort: München (D)

LASER World of PHOTONICS

Weltleitmesse und Kongressfür Komponenten, Systeme und Anwendungen der Photonik

Datum: 24.-27. Juni 2025

Ort: München (D)

SINDEX

Schweizer Messe für industrielle Automatisierung

Datum: 02.-04. September 2025

Ort: Bern (CH)

Ilmac

Fachmesse für Prozess- und Labortechnologie

Datum: 16.-18. September 2025

Ort: Basel (CH)

CMS Berlin

Internationale Leitmesse für Reinigung und Hygiene

Datum: 23.-26. September 2025

Ort: Berlin (D)

POWTECH

Pharma.Manufacturing.Excellence

Datum: 23. - 25. September 2025

Ort: Nürnberg (D)

A + A

Messe und Kongress für Arbeitsschutz und Arbeitssicherheit

Datum: 04.-07. November 2025

Ort: Düsseldorf (D)

AQUA Suisse

Die Schweizer Fachmesse für kommunales und industrielles Wassermanagement.

Datum: 26.-27. November 2025

Ort: Zürich (CH)

Pumps & Valves

Die Fachmesse für industrielle Pumpen, Armaturen & Prozesse

Datum: 26. - 27. November 2025

Ort: Zürich (CH)

interpack

Führende Messe für Prozesse und Verpackung

Datum: 07.-13. Mai 2026

Ort: Düsseldorf (D)

Bezugsquellenverzeichnis