Karte eines Gehirnorganoids: Die Farben der als Kreise dargestellten Zellen deuten unterschiedliche Zelltypen an. Rechts: Regulationsnetzwerk von Transkriptionsfaktor-​​Genen, das die Entwicklung eines Gehirnorganoids kontrolliert.

Karte eines Gehirnorganoids: Die Farben der als Kreise dargestellten Zellen deuten unterschiedliche Zelltypen an. Rechts: Regulationsnetzwerk von Transkriptionsfaktor-​​Genen, das die Entwicklung eines Gehirnorganoids kontrolliert.

Gehirn-​Organoid aus menschlichen Stammzellen unter dem Fluoreszenzmikroskop: das Protein GLI3 (violett) markiert neuronale Vorläuferzellen in Vorderhirn-​Regionen des Organoids. Nervenzellen sind grün gefärbt. 

Gehirn-​Organoid aus menschlichen Stammzellen unter dem Fluoreszenzmikroskop: das Protein GLI3 (violett) markiert neuronale Vorläuferzellen in Vorderhirn-​Regionen des Organoids. Nervenzellen sind grün gefärbt. 

Die Gehirnentwicklung kartieren

Publiziert

ETH-​Forschende züchten aus Stammzellen menschliches gehirnähnliches Gewebe und kartieren die Zelltypen, die in verschiedenen Hirnregionen vorkommen, sowie die Gene, die deren Entwicklung regulieren. Das hilft bei der Erforschung von Entwicklungsstörungen oder Nervenerkrankungen.

Das menschliche Gehirn ist das wohl komplexeste Organ in der gesamten belebten Natur. Es fasziniert und beschäftigt die Forschung seit langem. Allerdings ist die Erforschung des Gehirns, insbesondere welche Gene und molekularen Schalter dessen Entwicklung regulieren und lenken, nicht ganz einfach.

Bislang haben Wissenschaftler:innen dazu Tiermodelle, vor allem Mäuse, verwendet, doch lassen sich die Erkenntnisse nicht eins zu eins auf den Menschen übertragen. Das Mäusegehirn ist anders aufgebaut, und es fehlt ihm die für das Gehirn des Menschen typische gefurchte Oberfläche. Auch Zellkulturen waren bislang nur bedingt geeignet, breiten sich die Zellen doch meistens nur flächig auf einem Kulturmedium aus, was der natürlichen dreidimensionalen Struktur des Gehirns nicht entspricht.

Molekulare Fingerabdrücke kartieren

Eine Gruppe von Forschenden um Barbara Treutlein, ETH-Professorin am Departement Biosysteme in Basel, hat nun einen neuen Weg beschritten, um die Entwicklung des menschlichen Gehirns zu erforschen: Sie züchtet und nutzt Organoide, millimetergrosse dreidimensionale Gewebeklümpchen, die sich aus sogenannt pluripotenten Stammzellen heranziehen lassen.

Vorausgesetzt, diese Stammzellen erhalten den richtigen Stimulus, können Forschende sie so programmieren, dass sie zu jeder beliebigen Körperzelle werden, also auch zu Nervenzellen. Werden die Stammzellen in einem kleinen Gewebeball aggregiert und dann dem entsprechenden Stimulus ausgesetzt, können sich diese sogar selbstorganisieren und ein dreidimensionales Gehirn-Organoid mit einer komplexen Gewebearchitektur formieren.

In einer neuen Studie, die soeben in der Fachzeitschrift Nature erschienen ist, haben nun Treutlein und ihre Mitarbeitenden tausende von einzelnen Zellen eines Gehirn-Organoids zu verschiedenen Zeitpunkten sehr detailliert molekulargenetisch charakterisiert, also die Gesamtheit aller Gen-Transkripte (Transkriptom) als Mass für die Genaktivität, aber auch die Zugänglichkeit des Genoms als Mass für die regulatorische Aktivität erfasst. Diese Daten konnten sie in einer Art Landkarte darstellen, auf welcher der molekulare Fingerabdruck jeder Zelle innerhalb des Organoids kartographiert ist.

Das Vorgehen erzeugt allerdings immense Datensätze: Jede Zelle des Organoids besitzt 20'000 Gene, jedes Organoid wiederum besteht aus vielen tausenden von Zellen. «Das ergibt eine gigantische Matrix, die wir nur mithilfe von geeigneten Programmen und Maschinellem Lernen lösen können», erklärt Jonas Fleck, Doktorand in der Treutlein-Gruppe und einer der Co-Erstautoren der Studie. Um die Daten zu analysieren und die Genregulationsmechanismen vorherzusagen, entwickelten die Forschenden ein eigenes Programm. «Damit können wir für jedes einzelne Gen ein ganzes Interaktionsnetzwerk erzeugen und vorhersagen, was beim Ausfall dieses Gens in den echten Zellen passiert», sagt Fleck.

Genetische Schalter identifizieren

Ziel dieser Studie war es, systematisch jene genetischen Schalter zu identifizieren, welche die Entwicklung der Nervenzellen in verschiedenen Regionen der Organoide massgebend beeinflussen.

Mithilfe eines Crispr/Cas-Systems schalteten die ETH-Forschenden in jeweils einer Zelle gezielt ein Gen aus, im gesamten Organoid an die zwei Dutzend Gene gleichzeitig. Damit konnten sie herausfinden, welche Rolle die jeweiligen Gene bei der Entwicklung des Gehirn-Organoids spielten.

«Mit diesem Verfahren kann man Gene, die in Krankheiten involviert sind, überprüfen. Zudem kann man schauen, welchen Effekt diese Gene auf die Entwicklung verschiedener Zellen innerhalb des Gehirn-Organoids haben», erklärt Sophie Jansen, die ebenfalls in der Gruppe von Treutlein doktoriert und zweite Co-Erstautorin der Studie ist.

Musterbildung des Vorderhirns überprüft

Um die Theorie experimentell zu überprüfen, wählten die Forschenden exemplarisch das Gen GLI3 aus. Dieses Gen ist die Bauanleitung für den gleichnamigen Transkriptionsfaktor, ein Protein also, das sich an bestimmten Stellen des Erbguts andockt und damit ein anderes Gen reguliert. Dadurch kann die Zellmaschinerie dieses Gen nicht ablesen und in ein RNA-Molekül überschreiben (transkribieren).

Mutationen im Gen GLI3 führen bei Mäusen unter anderem zu Fehlentwicklungen im Zentralnervensystem. Seine Rolle in der neuronalen Entwicklung des Menschen war bislang nicht erforscht. Bekannt ist, dass Mutationen in dem Gen zu verschiedenen Krankheiten führen, wie der Greig Cephalopolysyndactylie oder dem Pallister-Hall-Syndrom.

Indem die Forschenden nun dieses GLI3-Gen stummschalteten, konnten sie einerseits ihre theoretischen Vorhersagen überprüfen, andererseits direkt in der Zellkultur feststellen, wie sich der Ausfall dieses Gens auf die weitere Entwicklung des Gehirn-Organoids auswirkte. «Wir konnten zum ersten Mal zeigen, dass das GLI3-Gen beim Menschen in die Bildung von Vorderhirnmustern involviert ist. Das war zuvor nur in der Maus gezeigt worden», sagt Treutlein.

Modellsysteme widerspiegeln Entwicklungsbiologie

«Das Aufregende an dieser Forschung ist, dass man die genomweiten Daten von so vielen einzelnen Zellen verwenden kann, um zu postulieren, welche Rolle die individuellen Gene spielen», erklärt sie. «Ebenso aufregend ist für mich, dass diese in der Petrischale hergestellten Modellsysteme wirklich Entwicklungsbiologie widerspiegeln, wie wir es aus der Maus kennen.»

Faszinierend sei, dass man in einem Medium ein selbstorganisiertes Gewebe mit Strukturen erhalte, die mit denen des menschlichen Gehirns vergleichbar seien. Nicht nur auf morphologischer Ebene, sondern auch – was die Forschenden in ihrer neusten Studie gezeigt haben – auf Stufe Genregulation und Musterbildung. «Solche Organoide kann man wirklich brauchen, um menschliche Entwicklungsbiologie zu erforschen», betont Treutlein.

Vielseitig einsetzbare Gehirn-Organoide

Die Forschung an Organoiden aus menschlichem Zellmaterial hat den Vorteil, dass die Erkenntnisse auf den Menschen übertragbar sind. Sie lassen sich nicht nur dafür nutzen, um grundlegende Entwicklungsbiologie zu erforschen, sondern auch die Rolle von Genen in Krankheiten oder Entwicklungsstörungen des Gehirns. So sind Treutlein und ihre Mitarbeitenden daran, die genetische Ursache von Autismus oder Heterotopia, bei der sich Nervenzellen nicht an der anatomisch üblichen Lokalisation in der Grosshirnrinde befinden, anhand von solchen Organoiden zu untersuchen.

Organoide können auch für das Wirkstoff-Screening genutzt werden, möglicherweise auch für die Zucht von transplantierbaren Organen oder Organteilen. Die Pharmabranche ist an solchen Zellkulturen stark interessiert, wie Treutlein bestätigt.

Allerdings ist die Aufzucht von Organoiden zeit- und arbeitsintensiv. Zudem entwickelt sich jedes Zellklümpchen individuell und nicht standardisiert. Treutlein arbeitet mit ihrem Team deshalb daran, die Organoide zu verbessern und den Herstellungsprozess zu automatisieren.

Human Cell Atlas

Die Erforschung und Kartierung der Gehirn-Organoide ist eingebettet in den «Human Developmental Cell Atlas»; dieser wiederum ist Teil des «Human Cell Atlas». Mit dem Human Cell Atlas wollen Forschende weltweit alle Zellentypen des menschlichen Körpers kartieren sowie Daten darüber zusammentragen, wann in welchen Zellen welche Gene aktiv sind und welche Gene in Krankheiten involviert sein könnten. Die Leiterin des Human Cell Atlas ist MIT-Biologieprofessorin Aviv Regev, die 2021 den Ehrendoktortitel von der ETH Zürich erhalten hat. ETH-Professorin Barbara Treutlein co-koordiniert den Teilbereich «Organoid Cell Atlas». Dessen Ziel ist es, alle Zellstadien, die in Zellkultur hergestellt werden können, zu kartieren und mit den ursprünglichen Zellen des menschlichen Körpers zu vergleichen.

Literatur

Fleck JS, Jansen SMJ, Wollny D, Seimiya M, Zenk F, Santel M, He Z, Camp JG, Treutlein B. Inferring and perturbing cell fate regulomes in human brain organoids. Nature (2022), online publiziert 5. Oktober. Doi: 10.1038/s41586-​022-05279-8

EVENTS

Pharmapack Paris

Europas führende Veranstaltung für Verpackung und Medikamentenlieferung.

Datum: 22.-23. Januar 2025

Ort: Paris (F)

Empack Schweiz

The Future of Packaging Technology

Datum: 22.-23. Januar 2025

Ort: Zürich (CH)

LOGISTICS & AUTOMATION

Schweizer Fachmesse für Logistik und Transport

Datum: 22.-23. Januar 2025

Ort: Zürich (CH)

Vivaness

Internationale Fachmesse für Naturkosmetik

Datum: 11.-14. Februar 2025

Ort: Nürnberg (D)

ZHAW-IFM Day

Der IFM-Day der ZHAW findet als Begegnungstag für FM-Ausbildung und FM-Praxis statt.

Datum: 07. März 2025

Ort: Wädenswil (CH)

LogiMat

Internationale Fachmesse für Intralogistik

Datum: 11.-13. März 2025

Ort: Stuttgart (D)

Global Industrie

Midest - smart Industries - Industrie - Tolexpo - die weltweit grössten Fachmessen für die Industriezulieferwirtschaft

Datum: 11.-14. März 2025

Ort: Lyon (F)

Additive Manufacturing Forum

Die Entscheider- und Expertenkonferenz bringt das gesamte Wertschöpfungssystem rund um die additive Fertigung zusammen.

Datum: 17.-18. März 2025

Ort: Berlin (D)

Hannover Messe

Transfoming Industry Togheter

Datum: 31. März.-04. April 2025

Ort: Hannover (D)

SENSOR + TEST

Internationale Fachmesse für Sensorik, Mess- und Prüftechnik

Datum: 06.-08. Mai 2025

Ort: Nürnberg (D)

LABVOLUTION

Europäische Fachmesse für innovative Laborausstattung und die Optimierung von Labor-Workflows

Datum: 20.-22. Mai 2025

Ort: Hannover (D)

EPHJ-EPMT-SMT

Internationale Ausstellung für Uhrenindustrie, Mikrotechnologie und Medizinaltechnik

Datum: 03.-06. Juni 2025

Ort: Genf (CH)

CosmeticBusiness

Entdecken Sie innovative Verpackungslösungen für eine nachhaltige Zukunft der Kosmetikindustrie

Datum: 04.-05. Juni 2025

Ort: München (D)

The Pharma Days

Die Pharma Days (TPD) sind eine Veranstaltung unter Ausschluss der Öffentlichkeit, die Zusammenarbeit, Innovation und Geschäftswachstum vorantreiben soll.

Datum: 04.-05. Juni 2025

Ort: Genf (CH)

Automatica

Die Leitmesse für intelligente Automation und Robotik

Datum: 24.-27. Juni 2025

Ort: München (D)

LASER World of PHOTONICS

Weltleitmesse und Kongressfür Komponenten, Systeme und Anwendungen der Photonik

Datum: 24.-27. Juni 2025

Ort: München (D)

SINDEX

Schweizer Messe für industrielle Automatisierung

Datum: 02.-04. September 2025

Ort: Bern (CH)

Ilmac

Fachmesse für Prozess- und Labortechnologie

Datum: 16.-18. September 2025

Ort: Basel (CH)

CMS Berlin

Internationale Leitmesse für Reinigung und Hygiene

Datum: 23.-26. September 2025

Ort: Berlin (D)

POWTECH

Pharma.Manufacturing.Excellence

Datum: 23.-25. September 2025

Ort: Nürnberg (D)

FachPack

Europäische Fachmesse für Verpackung, Technik, Veredelung und Logistik

Datum: 23.-25. September 2025

Ort: Nürnberg (D)

Rehacare

Die REHACARE ist die internationale Fachmesse für Rehabilitation, Prävention, Inklusion und Pflege.

Datum: 17.-20. September 2025

Ort: Düsseldorf (D)

IN.STAND

Die Messe für Instandhaltung und Services

Datum: 21.-22. Oktober 2025

Ort: Stuttgart (D)

A + A

Messe und Kongress für Arbeitsschutz und Arbeitssicherheit

Datum: 04.-07. November 2025

Ort: Düsseldorf (D)

AQUA Suisse

Die Schweizer Fachmesse für kommunales und industrielles Wassermanagement.

Datum: 26.-27. November 2025

Ort: Zürich (CH)

maintenance Schweiz

Schweizer Fachmesse für industrielle Instandhaltung und Facility Management

Datum: 26.-27. November 2025

Ort: Zürich (CH)

Pumps & Valves

Die Fachmesse für industrielle Pumpen, Armaturen & Prozesse

Datum: 26.-27. November 2025

Ort: Zürich (CH)

Swissbau

Führende Plattform der Bau- und Immobilienwirtschaft

Datum: 20.-23. Januar 2026

Ort: Basel (CH)

aqua pro

B2B-Plattform in der Schweiz für Fachkräfte des globalen Wasserkreislaufs

Datum: 04.-06. Februar 2026

Ort: Bulle (CH)

analytica

Weltleitmesse für Labortechnik, Analytik, Biotechnologie und analytica conference

Datum: 24.-27. März 2026

Ort: München (D)

Siams

Die Messe der Produktionsmittel der Mikrotechnik

Datum: 21.-24. April 2026

Ort: Moutier (CH)

IFAT

Weltleitmesse für Wasser-, Abwasser-, Abfall- und Rohstoffwirtschaft

Datum: 04.-08. Mai 2026

Ort: München (D)

interpack

Führende Messe für Prozesse und Verpackung

Datum: 07.-13. Mai 2026

Ort: Düsseldorf (D)

ArbeitsSicherheit Schweiz

Fachmesse für Arbeitssicherheit, Gesundheitsschutz und Gesundheitsförderung am Arbeitsplatz

Datum: 20.-21. Mai 2026

Ort: Zürich (CH)

all about automation

Fachmesse für Industrieautomation

Datum: 26.-27. August 2026

Ort: Zürich (CH)

Ilmac Lausanne

Networking. Forum. Aussteller

Datum: 23.-24. September 2026

Ort: Lausanne (CH)

Cleanzone

Internationale Fachmesse und Kongress für Reinraumtechnologie

Datum: 23.-24. September 2026

Ort: Frankfurt am Main (D)

VISION

Weltleitmesse für Bildverarbeitung

Datum: 06.-08. Oktober 2026

Ort: Stuttgart (D)

electronica

Weltleitmesse und Konferenz der Elektronik

Datum: 10.-13. November 2026

Ort: München (D)

Achema

Internationale Leitmesse der Prozessindustrie

Datum: 14.-18. Juni 2027

Ort: Frankfurt am Main (D)

drupa

Weltweit führende Fachmesse für Drucktechnologien

Datum: 09.-17. Mai 2028

Ort: Düsseldorf (D)

Bezugsquellenverzeichnis